116 research outputs found

    High-speed mobile robot control in off-road conditions: a multi-model based adaptive approach

    Get PDF
    International audienceThis paper is focused on the design of a control strategy for the path tracking of off-road mobile robots acting at high speed. In order to achieve high accuracy in such a context, uncertain and fast dynamics have to be explicitly taken into account. Since these phenomena (grip conditions, delays due to inertial and low-level control properties) are hardly measurable directly, the proposed approach relies on predictive and observer-based adaptive control techniques. In particular, the adaptive part is based on an observer loop, taking advantage of both kinematic and dynamic vehicle models. This multi-model based adaptive approach permits to adapt on-line the grip conditions (represented by cornering stiffnesses), enabling highly reactive sideslip angles observation and then accurate path tracking. The relevance of this approach is investigated through full scale experiments

    Fast and accurate mapping of Complete Genomics reads

    Get PDF
    Many recent advances in genomics and the expectations of personalized medicine are made possible thanks to power of high throughput sequencing (HTS) in sequencing large collections of human genomes. There are tens of different sequencing technologies currently available, and each HTS platform have different strengths and biases. This diversity both makes it possible to use different technologies to correct for shortcomings; but also requires to develop different algorithms for each platform due to the differences in data types and error models. The first problem to tackle in analyzing HTS data for resequencing applications is the read mapping stage, where many tools have been developed for the most popular HTS methods, but publicly available and open source aligners are still lacking for the Complete Genomics (CG) platform. Unfortunately, Burrows-Wheeler based methods are not practical for CG data due to the gapped nature of the reads generated by this method. Here we provide a sensitive read mapper (sirFAST) for the CG technology based on the seed-and-extend paradigm that can quickly map CG reads to a reference genome. We evaluate the performance and accuracy of sirFAST using both simulated and publicly available real data sets, showing high precision and recall rates. © 2014 Elsevier Inc

    Effects of Dietary Distillers Dried Grains with Solubles and Soybean Meal on Extruded Pellet Characteristics and Growth Responses of Juvenile Yellow Perch

    Get PDF
    A 126-d feeding trial was performed to investigate graded combinations of distillers dried grains with solubles (DDGS) and soybean meal (SBM) in diets formulated for yellow perch Perca flavescens. Six experimental diets contained DDGS and SBM at 0 and 31.5% (dry matter basis), respectively (0/31.5 diet), 10 and 26% (10/26), 20 and 20.5% (20/20.5), 30 and 15% (30/15), 40 and 9.5% (40/9.5), and 50 and 4% (50/4) to obtain similar levels of crude protein (mean ± SE = 30.1 ± 0.2%), crude lipid (16.7 ± 0.7%), and digestible energy (13.5 ± 0.2 kJ/g). Fourteen fish (initial individual weight = 19.1 ± 0.5 g) were randomly selected and stocked into each of twenty-four 110-L tanks (4 replicate tanks/diet). Common biological and mechanical filter systems were used to recirculate the water and maintain similar water quality. Fish that received the 40/9.5 diet exhibited the highest apparent absolute weight gain and percent weight gain, while fish that were fed the 10/26, 20/20.5, 30/15, and 40/9.5 diets exhibited similar absolute weight gain. Fish that were given the 20/20.5, 30/15, and 40/9.5 diets also exhibited similar percent weight gain. Fulton’s condition factor and apparent protein digestibility were significantly lower and higher, respectively, for fish that received the 50/4 diet than for all other treatment groups. Crude protein and crude lipid levels in muscle samples did not significantly differ among treatment groups. Results indicated that yellow perch can utilize DDGS plus SBM at a combined inclusion level of up to 49.5% without negative effects on growth. The mechanical strength and color of the extruded pellets were related to the level of DDGS plus SBM in the feed blends. Hepatosomatic indices were correlated with pellet color, while protein digestibility decreased with increasing pellet strength

    Barut-Girardello coherent states for u(p,q) and sp(N,R) and their macroscopic superpositions

    Get PDF
    The Barut-Girardello coherent states (BG CS) representation is extended to the noncompact algebras u(p,q) and sp(N,R) in (reducible) quadratic boson realizations. The sp(N,R) BG CS take the form of multimode ordinary Schr\"odinger cat states. Macroscopic superpositions of 2^{n-1} sp(N,R) CS (2^n canonical CS, n=1,2,...) are pointed out which are overcomplete in the N-mode Hilbert space and the relation between the canonical CS and the u(p,q) BG-type CS representations is established. The sets of u(p,q) and sp(N,R) BG CS and their discrete superpositions contain many states studied in quantum optics (even and odd N-mode CS, pair CS) and provide an approach to quadrature squeezing, alternative to that of intelligent states. New subsets of weakly and strongly nonclassical states are pointed out and their statistical properties (first- and second-order squeezing, photon number distributions) are discussed. For specific values of the angle parameters and small amplitude of the canonical CS components these states approaches multimode Fock states with one, two or three bosons/photons. It is shown that eigenstates of a squared non-Hermitian operator A^2 (generalized cat states) can exhibit squeezing of the quadratures of A.Comment: 29 pages, LaTex, 5 figures. Improvements in text, corrections in some formulas. To appear in J. Phys. A, v. 3

    Robertson Intelligent States

    Get PDF
    Diagonalization of uncertainty matrix and minimization of Robertson inequality for n observables are considered. It is proved that for even n this relation is minimized in states which are eigenstates of n/2 independent complex linear combinations of the observables. In case of canonical observables this eigenvalue condition is also necessary. Such minimizing states are called Robertson intelligent states (RIS). The group related coherent states (CS) with maximal symmetry (for semisimple Lie groups) are particular case of RIS for the quadratures of Weyl generators. Explicit constructions of RIS are considered for operators of su(1,1), su(2), h_N and sp(N,R) algebras. Unlike the group related CS, RIS can exhibit strong squeezing of group generators. Multimode squared amplitude squeezed states are naturally introduced as sp(N,R) RIS. It is shown that the uncertainty matrices for quadratures of q-deformed boson operators a_{q,j} (q > 0) and of any k power of a_j = a_{1,j} are positive definite and can be diagonalized by symplectic linear transformations. PACS numbers: 03.65.Fd, 42.50.DvComment: 23 pages, LaTex. Minor changes in text and references. Accepted in J. Phys.

    On the evolution of superposition of squeezed displaced number states with the multiphoton Jaynes-Cummings model

    Full text link
    In this paper we discuss the quantum properties for superposition of squeezed displaced number states against multiphoton Jaynes-Cummings model (JCM). In particular, we investigate atomic inversion, photon-number distribution, purity, quadrature squeezing, Mandel QQ parameter and Wigner function. We show that the quadrature squeezing for three-photon absorption case can exhibit revivals and collapses typical to those occurring in the atomic inversion for one-photon absorption case. Also we prove that for odd number absorption parameter there is a connection between the evolution of the atomic inversion and the evolution of the Wigner function at the origin in phase space. Furthermore, we show that the nonclassical states whose the Wigner functions values at the origins are negative will be always nonclassical when they are evolving through the JCM with even absorption parameter. Also we demonstrate that various types of cat states can be generated via this system.Comment: 27 pages, 10 figure

    Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)

    Full text link
    The basic known and hypothetic one- and two-element phases of the B-C-N-O system (both superhard phases having diamond and boron structures and precursors to synthesize them) are described. The attention has been given to the structure, basic mechanical properties, and methods to identify and characterize the materials. For some phases that have been recently described in the literature the synthesis conditions at high pressures and temperatures are indicated.Comment: Review on superhard B-C-N-O phase

    Chemoproteomics reveals Toll-like receptor fatty acylation

    Get PDF
    Partial funding for Open Access provided by The Ohio State University Open Access Fund.Background: Palmitoylation is a 16-carbon lipid post-translational modification that increases protein hydrophobicity. This form of protein fatty acylation is emerging as a critical regulatory modification for multiple aspects of cellular interactions and signaling. Despite recent advances in the development of chemical tools for the rapid identification and visualization of palmitoylated proteins, the palmitoyl proteome has not been fully defined. Here we sought to identify and compare the palmitoylated proteins in murine fibroblasts and dendritic cells. Results: A total of 563 putative palmitoylation substrates were identified, more than 200 of which have not been previously suggested to be palmitoylated in past proteomic studies. Here we validate the palmitoylation of several new proteins including Toll-like receptors (TLRs) 2, 5 and 10, CD80, CD86, and NEDD4. Palmitoylation of TLR2, which was uniquely identified in dendritic cells, was mapped to a transmembrane domain-proximal cysteine. Inhibition of TLR2 S-palmitoylation pharmacologically or by cysteine mutagenesis led to decreased cell surface expression and a decreased inflammatory response to microbial ligands. Conclusions: This work identifies many fatty acylated proteins involved in fundamental cellular processes as well as cell type-specific functions, highlighting the value of examining the palmitoyl proteomes of multiple cell types. Spalmitoylation of TLR2 is a previously unknown immunoregulatory mechanism that represents an entirely novel avenue for modulation of TLR2 inflammatory activity.This work was supported by funding from the NIH/NIAID (grant R00AI095348 to J.S.Y.), the NIH/NIGMS (R01GM087544 to HCH), and the Ohio State University Public Health Preparedness for Infectious Diseases (PHPID) program. NMC is supported by the Ohio State University Systems and Integrative Biology Training Program (NIH/NIGMS grant T32GM068412). BWZ is a fellow of the National Science Foundation Graduate Research Fellowship Program (DGE-0937362)
    corecore